I am a sociologist and computer scientist investigating how ground-truth data for machine learning is produced. My research focuses on labor conditions and power dynamics in data work. Since 2018, I have continuously engaged with communities of data workers globally.
I lead the research group Data, Algorithmic Systems, and Ethics at Weizenbaum-Institut and am a senior researcher at the DAIR Institute. I am also the principal investigator of the Data Worker’s Inquiry project, a space for data workers to engage in AI research.
I am also a mom, an immigrant, and a first-generation college graduate and academic. My pronouns are she/ella.
// What Knowledge Do We Produce from Social Media Data and How?
Adriana Alvarado, Tianling Yang, Milagros Miceli (joint first authors).
In Proc. ACM Hum.-Compt. Interact. 2024.
// “Guilds” as Worker Empowerment and Control in a Chinese Data Work Platform.
Tianling Yang and Milagros Miceli.
In Proc. ACM Hum.-Compt. Interact. 2024.
// Who trains the data for European artificial intelligence?
Milagros Miceli, Paola Tubaro, Antonio A. Casilli, Thomas Le Bonniec, Camilla Salim Wagner, Laurenz Sachenbacher.
European Parliament; The Left. 2024.
// “We try to empower them” – Exploring Future Technologies to Support Migrant Jobseekers.
Sonja Mei Wang, Kristen M. Scott, Margarita Artemenco, Milagros Miceli, and Bettina Berendt.
In ACM Conference on Fairness, Accountability, and Transparency (FAccT ’23). 2023.
// Mobilizing Social Media Data: Reflections of a Researcher Mediating between Data and Organization
Adriana Alvarado García, Marisol Wong-Villacres, Milagros Miceli, Tianling Yang, Benjamín Hernández, and Christopher Le Dantec.
In Proc. ACM Hum.-Compt. Interact. 2023
ACM digital library // PDF
// Documenting Data Production Processes. A Participatory Approach to Data Work.
Milagros Miceli, Tianling Yang, Adriana Alvarado García, Julian Posada, Sonja Mei Wang, Marc Pohl, and Alex Hanna.
In Proc. ACM Hum.-Compt. Interact. 2022
ACM digital library // arXiv // prototype // video presentation
// The Data-Production Dispositif.
Milagros Miceli and Julian Posada.
In Proc. ACM Hum.-Compt. Interact. 2022
Honorable Mention, Methods Award, Impact Award 🏆
ACM digital library // PDF // arXiv // poster // blog post // video presentation
// Algorithmic Tools in Public Employment Services: Towards a Jobseeker-Centric Perspective.
Kristen M. Scott, Sonja Mei Wang, Milagros Miceli, Pieter Delobelle, Karolina Sztandar-Sztanderska, and Bettina Berendt.
In ACM Conference on Fairness, Accountability, and Transparency (FAccT ’22). 2022.
Best Paper Award 🏆
// Studying Up Machine Learning Data: Why Talk About Bias When We Mean Power?
Milagros Miceli, Julian Posada, and Tianling Yang.
In Proc. ACM Hum.-Compt. Interact. 2022
// Wisdom for the Crowd: Discursive Power in Annotation Instructions for Computer Vision.
Milagros Miceli and Julian Posada.
CVPR 2021 Workshop Beyond Fairness: Towards a Just, Equitable, and Accountable Computer Vision.
arXiv // PDF // poster // video presentation
// Documenting Computer Vision Datasets: An Invitation to Reflexive Data Practices.
Milagros Miceli, Tianling Yang, Laurens Naudts, Martin Schuessler, Diana Serbanescu, and Alex Hanna.
In Conference on Fairness, Accountability, and Transparency (FAccT ’21).
// Between Subjectivity and Imposition: Power Dynamics in Data Annotation for Computer Vision.
Milagros Miceli, Martin Schuessler, and Tianling Yang.
In Proc. ACM Hum.-Comput. Interact. 4, CSCW2 (October 2020).
Best Paper Award 🏆
ACM digital library // PDF // video presentation // blog post
Gunay Kazimzade and Milagros Miceli.
In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (AIES ’20).
// “I hope this isn’t for weapons.” How Syrian Data Workers Train AI
Milagros Miceli.
2024, Untold Mag
// The Performativity of Ground-Truth Data.
Milagros Miceli & Tianling Yang.
2023, unthinking.photography
// Data Work and its Layers of (In)Visibility.
Adrienne Williams & Milagros Miceli.
2023, Just Tech
// La explotación laboral detrás de la inteligencia artificial
Adrienne Williams, Milagros Miceli, and Timnit Gebru.
2023, DataGénero
// The Exploited Labor Behind Artificial Intelligence.
Adrienne Williams, Milagros Miceli, and Timnit Gebru.
2022, Noema Magazine
2024-06-18 – Panel on Responsible Generative AI // CVPR Conference // online
2024-05-31 – Panel on Labor Rights and Data Work // Mila Quebec AI Institute
2024-04-18 – Machtasymmetrien und Arbeitsbedingungen in der Datenarbeit // LOOPS // UdK Berlin
2024-03-20 – On the Power Dynamics and Labour Conditions on ML Data Production // University of Amsterdam
2024-01-18 – Data & Society — Generative AI’s Labor Impacts
2024-01-12 – Platform work and AI // Institute for Human Development
2023-12-08 – She, He and It. Discussing AI and Journalism from a Global South Perspective. // Syrian Female Journalist Network // Oyoun
2023-12-06 – AI and the future (and present) of work // ReDemocracIA
2023-11-10 – Data Work: Classifying, Naming, Exerting Power // Viadrina University
2023-11-09 – Responsibly Working with Crowdsourced Data // HCOMP
2023.11.04 – Harvest and Decay: A weekend on Artificial intelligence // Gropius Bau
2023-10-24 – There’s no Ethical AI without Ethical Data Work // John Carbot University
2023-09-29 – The Labor that Fuels AI // Deutsches Haus // NYU
2023-06-28 – Transparency for whom? Designing data documentation with data workers // NoBias Data School
2023-06-14 – We need to talk about data work for machine learning // Nexa Center // Turin University
2023-06-12 – Responsibly Working with Crowdsourced Data // FAccT 2023
2023.06.02 – Transparency for whom? Designing data documentation with data workers // DGTF
2023-06-01 – Designing data documentation with data workers // Science of Intelligence // TU Berlin
2023-05-26 – We need to talk about Labour as a central dimension of AI ethics // TU Munich
2023-04-04 – ¿Por qué es necesario hablar de trabajo cuando hablamos de IA? // Unversidad Torcuato Di Tella
2023-03-29 – Poder sesgos en el trabajo de datos // <A+> Alliance for Inclusive Algorithms
2023-03-17 – On Worker Exploitation, Data Theft, and the Centralization of Power // Panel at Stochastic Parrots Day
// 2025
// 2024
// 2023
// 2022